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Abstract Brain phospholipids are highly enriched in doco-
sahexaenoic acid (DHA; 22:6n-3). Recent advances indicate
that 22:6n-3 is released from brain phospholipids via the
action of phospholipase A2 (PLA2) in response to several
stimuli, including neurotransmission, where it then acts as a
secondary messenger. Furthermore, it is now known that
released 22:6n-3 is a substrate for several oxygenation
enzymes whose products are potent signaling molecules.
One emerging candidate PLA2 involved in the release of
22:6n-3 from brain phospholipids is the group VI calcium-
independent phospholipase A2 (iPLA2). After a brief review
of brain 22:6n-3 metabolism, cell culture and rodent studies
facilitating the hypothesis that group VI iPLA2 releases
22:6n-3 from brain phospholipids are discussed. The
identification of PLA2s involved in cleaving 22:6n-3 from
brain phospholipids could lead to the development of novel
therapeutics for brain disorders in which 22:6n-3 signaling is
disordered.—Green, J. T., S. K. Orr, and R. P. Bazinet. The
emerging role of group VI calcium-independent phospholi-
pase A2 in releasing docosahexaenoic acid from brain
phospholipids. J. Lipid Res. 2008. 49: 939–944.
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BRAIN UPTAKE AND UTILIZATION OF
DOCOSAHEXAENOIC ACID

The mammalian brain is particularly enriched with the
PUFA docosahexaenoic acid (DHA; 22:6n-3) (1). Within
the brain, 22:6n-3 helps maintain membrane fluidity (2),
promotes cell survival (3–5), acts as a secondary messenger
via coupling to neuroreceptors (6–8), and is converted, via
oxygenation, to a variety of signaling molecules, some of
which have potent anti-inflammatory properties (9, 10).
Thus, it is not surprising that 22:6n-3 is important in neural
development (11, 12) and has been implicated in a variety

of neurological disorders, including stroke (13), Alzhei-
mer’s disease (14), and major depression (15).

The brain cannot synthesize n-3 PUFAs de novo; there-
fore, it must either take up preformed 22:6n-3 or desatu-
rate and elongate one of its precursors. With regard to
the latter, although brain cells and in particular astrocytes
have the capacity to desaturate and elongate a-linolenic
acid (18:3n-3) to 22:6n-3 (16), in vivo tracer studies suggest
that brain desaturation/elongation is a relatively minor
pathway (0.024 pmol/g brain/s) (17) compared with brain
uptake of preformed 22:6n-3 (13–15 pmol/g brain/s) (17–
19). Furthermore, unlike the liver, the brain does not up-
regulate its ability to desaturate and elongate 18:3n-3 to
22:6n-3 when dietary n-3 PUFAs are limited (20–22).

Plasma unesterified 22:6n-3 rapidly disassociates from
albumin, passes through the blood-brain barrier, and en-
ters the brain (Fig. 1, step A) (23–25). Upon its entry,
22:6n-3 is activated by an acyl-CoA synthetase (26, 27). A
small portion of the newly formed docosahexaenoyl-CoA
is b-oxidized (28, 29), and the remainder is esterified via
an acyl-CoA transferase to the sn -2 position of phospho-
lipids. The 22:6n-3 that enters the brain and passes through
the docosahexaenoyl-CoA pool is esterified into brain
phospholipids at a rate of 13–15 pmol/g brain/s. This
22:6n-3 pool is predominantly esterified to ethanolamine
(6–7 pmol/g brain/s) and choline glycerophospholipids
(4–5 pmol/g brain/s) (28–31), and subsequent remod-
eling and de novo phospholipid synthesis likely explain
its relative mass distribution within various phospholipid
species (32). Phospholipid 22:6n-3 (sn -2 esterified) is
then released by phospholipase A2 (PLA2) at a net rate of
102–131 pmol/g brain/s (29–31). A portion of the
released 22:6n-3 is available for the synthesis of oxygen-
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ated derivatives via cyclooxygenase-2 (33) or a putative 15-
lipoxygenase (34), whereas the remainder is activated by
an acyl-CoA synthetase in which, again, a small portion of
it is available for b-oxidation and the remainder is rees-

terified into the sn -2 position of brain phospholipids. Ki-
netic studies estimate that under basal conditions, ?90%
of the 22:6n-3 that is released via PLA2 is reesterified into
the sn -2 position of brain phospholipids (29–31), and the

Fig. 1. Docosahexaenoic acid (DHA; 22:6n-3) rapidly disassociates from plasma albumin and passes through the blood-brain barrier
(A) into the brain, where it is activated by an acyl-CoA synthetase (B). Upon its activation, a small proportion of 22:6n-3 can be b-oxidized
(C), whereas the remainder is esterified to a 2-lysophospholipid via acyl-CoA transferase (D). In this model, group VI calcium-independent
phospholipase A2 (iPLA2) releases 22:6n-3 from neural phospholipids (creating the 2-lysophospholipid) (E), where a portion can be con-
verted to oxygenated derivatives (F) or activated by acyl-CoA synthetase (G). ATP, thrombin, and bradykinin are known activators of iPLA2.
Although cholinergic (M1) and serotonergic (5-HT2A) receptor activation releases 22:6n-3 from neural phospholipids, the PLA2 isoform
involved is not known. Plasma unesterified 22:6n-3 enters the brain and is esterified to a 2-lysophospholipid at a rate of 13–15 pmol/g
brain/s. However, the net rate of 22:6n-3 esterification to brain phospholipids also includes recycled 22:6n-3, leading to a net rate of
22:6n-3 entry into phospholipids from the docosahexaenoyl-CoA pool (D) of 102–131 pmol/g brain/s, which at steady state approximates
the rate of 22:6n-3 release from brain phospholipids (E). NPD1, neuroprotectin D1; RvD1, resolvin D1.
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10% that is lost is replaced by uptake from the plasma
unesterified 22:6n-3 pool (35).

BRAIN PLA2

To date, at least 22 genes that encode PLA2 proteins
have been identified in mammals. PLA2s cleave fatty acids
from the sn-2 position of glycerophospholipids, resulting in
an unesterified “free fatty acid” and a 2-lysophospholipid.
On a broad level, the mammalian PLA2 isoforms differ
with respect to their tissue and cellular distribution, sub-
strate specificities, and calcium requirements, and inter-
ested readers should consult other reviews for more details
(36–41), including PLA2 nomenclature/classification (41,
42). The isoforms identified in the brain to date include
groups IVA, IVB, and IVC calcium-dependent cytosolic
phospholipase A2 (cPLA2), groups IIA, IIC, IIE, V, and X
calcium-dependent secretory phospholipase A2 (sPLA2),
and groups VIA and VIB calcium-independent phospho-
lipase A2 (iPLA2) (43–49). It is worth noting that the mouse
strains C57BL/6, 129/Sv, and B10.RIII have a naturally
occurring missense mutation in the gene encoding for
the group IIA sPLA2 (45, 50–52). As new proteins with
PLA2-like activity are identified (53, 54) and specific anti-
bodies and reagents are developed, it is possible that
more isoforms will be detected within the brain. Another,
yet to be cloned, PLA2 whose activity has been detected
in the brain is the plasmalogen-selective PLA2 (55). This
enzyme is capable of cleaving fatty acids from plasmanyl-
ethanolamine, and because in the brain this glycerophos-
pholipid is rich in 22:6n-3, it is possible that this enzyme
may also play a role in 22:6n-3 release from brain phos-
pholipids (39, 56).

GROUP VI iPLA2: OVERVIEW

There are two distinct members of the iPLA2 family,
group VIA iPLA2 and group VIB iPLA2. The 85–88 kDa
group VIA iPLA2 was first isolated from macrophages in
1994 (57) and independently cloned by two laboratories
in 1997 (58, 59), whereas the group VIB iPLA2 was cloned
in 2000 (49). The group VIA iPLA2 shares several con-
served regions at the C terminus but has very little homol-
ogy at the N terminus with the group VIB iPLA2. The
group VI iPLA2s do not require calcium for their activity
but do use ATP for stabilization; they are stimulated by
thrombin and bradykinin (40, 60) but inhibited by bromo-
enolactone (61). However, very little is known about the
molecular/genetic regulation of group VI iPLA2, especially
within the brain (62). Initial studies suggested a homeo-
static role for group VI iPLA2 in regulating membrane
turnover (for review, see Ref. 63). However, several studies
have now shown that group VI iPLA2 plays an important
role in signal transduction (for review, see Refs. 40, 64).

In the brain, the basal expression and activity of
group VI iPLA2 is higher than that of other PLA2s (43,
65–67) and its protein expression decreases during aging

(68). Whereas brain cPLA2 and sPLA2 are commonly
thought to be selective for arachidonic acid (20:4n-6)
release (64, 69–73), the specific activity of group VI iPLA2

using 1-palmitoyl 2-R -phosphatidylcholine when linoleic
acid (18:2n-6), palmitic acid, oleic acid, or 20:4n-6 were
esterified in the sn -2 position (R) was 10.0, 4.3, 3.0, and
2.0mmol/min/mg protein, respectively (65). However, it is
important to consider cellular localization and substrate
availability when trying to determine in vivo selectivity. The
net rate of release of 18:2n-6 from brain phospholipids
(19 pmol/g brain/s) was at least five times lower than
that of 22:6n-3 (102–131 pmol/g brain/s), and when pre-
formed 22:6n-3 is present in chow, the concentration of
phospholipid esterified 18:2n-6 (987 nmol/g brain) was
almost 15 times lower than that of 22:6n-3 (13,844 nmol/g
brain) (18). Although these latter observations do not sug-
gest that group VI iPLA2 is not involved in cleaving 18:2n-6
from brain phospholipids, they do raise the question of
why so much group VI iPLA2 is present in the brain when
so little 18:2n-6 is present.

GROUP VI iPLA2 AND 22:6n-3 RELEASE FROM
BRAIN PHOSPHOLIPIDS

Evidence from cell culture studies

The first suggestion that brain group VI iPLA2 may be
selective for 22:6n-3 release came from Strokin, Sergeeva,
and Reiser (60) when they observed that bromoenolactone
inhibited 22:6n-3 but not 20:4n-6 release from phospho-
lipids of astrocytes stimulated with ATP. This study was
followed up by showing that bromoenolactone also inhib-
ited oxygen/glucose deprivation-induced 22:6n-3 release
from hippocampal phospholipids (74). In 2007, Strokin,
Sergeeva, and Reiser (48) repeated their 2003 finding
in which ATP-stimulated 22:6n-3 release from astrocyte
phospholipids was inhibited with bromoenolactone and
reproduced this effect with small interfering RNA silencing
of group VIB iPLA2. This latter study addressed the issue of
bromoenolactone inhibition selectivity and was followed
up by further demonstrating that bromoenolactone inhi-
bition of 22:6n-3 release from astrocyte phospholipids was
absent upon silencing group VIB iPLA2.

Evidence from in vivo studies

DeMar et al. (75) tested the half-life of [4,5-3H]22:6n-3
upon its intracerebroventricular administration to rats
that had consumed a diet either adequate or deprived of
n-3 PUFAs for 15 weeks postweaning. The half-life of [4,5-
3H]22:6n-3 in brain phospholipids of rats consuming the
n-3 PUFA-adequate diet was 33 days, whereas it was in-
creased to 90 days in the deprived rats. This conservation
of [4,5-3H]22:6n-3 suggested that enzymes involved in the
catabolism of 22:6n-3 must be downregulated in the brains
of n-3 PUFA-deprived rats, and in a subsequent experi-
ment candidate brain PLA2 isoforms (IIA sPLA2, IVA
cPLA2, and VIA iPLA2) were examined (47). Whereas
the activity, protein, and mRNA of group IVA cPLA2 and
group IIA sPLA2 were upregulated in the brains of rats
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consuming the n-3 PUFA-deprived diet, only the group VIA
iPLA2 isoform was downregulated, making it a candidate
mechanism by which the brain half-life of [4,5-3H]22:6n-3
was prolonged (47, 75). The activity, protein, and mRNA
of group VIA iPLA2 were downregulated; however, the
mechanism by which group VIA iPLA2 mRNA was down-
regulated was not explored, and whether or not there was
a downregulation of group VIB iPLA2 was not tested.

CONSEQUENCES OF 22:6n-3 RELEASE FROM
BRAIN PHOSPHOLIPIDS

Although many important functions have been attrib-
uted to 22:6n-3 within the brain (2, 76–78), few studies have
attempted to test whether these functions are related to re-
leased 22:6n-3. Rats deprived of dietary n-3 PUFAs to reduce
brain concentrations have behavioral deficits (79, 80), al-
tered neurotransmission (81, 82), decreased iPLA2 activ-
ity and expression (47), and decreased 22:6n-3 release from
brain phospholipids (75, 83). A portion of released 22:
6n-3 can be converted to neuroprotectin D1 or resolvin D1
(Fig. 1, step F), two signaling molecules involved in brain
cell survival and the resolution of inflammation (10, 13,
84). Docosahexaenoyl-CoA is a hepatic nuclear factor-4a
ligand (85), whereas unesterified 22:6n-3 is a peroxisome
proliferator-activated receptor ligand (86). Unesterified
22:6n-3 inhibits protein kinase C activity (87) and has been
implicated in the regulation of brain nuclear factor-kB
(13), p38 mitogen-activated protein kinase (5), Bcl-2 (84),
and Akt (88) signaling pathways. Furthermore, the activa-
tion of 22:6n-3 by acyl-CoA synthetase (102–131 pmol/g
brain/s) requires the use of two high-energy phosphates
from one ATP (22:6n-3 1 CoA 1 ATP Y 22:6n-3-CoA 1

AMP 1 PPi; Fig. 1, step G), consuming ?0.1% of the
rodent brain’s 208 nmol/g brain/s ATP (89–91). Future
studies are needed to determine the consequences of this
energetically expensive 22:6n-3 release and reesterification.

SUMMARY AND CONCLUSIONS

Recent studies have identified 22:6n-3 as an important
secondary messenger within the brain. The PLA2 isoform
involved in 22:6n-3 release from neural phospholipids
upon cholinergic (M1) (6, 8) and serotonergic (5-HT2A)
(7, 92) stimulation is not known. Unesterified 22:6n-3
likely directly, as well as through its oxygenated derivatives,
participates in signal transduction. Cell culture studies using
small molecule inhibitors and small interfering RNAs as
well as kinetic studies in the rodent brain suggest that
group VI iPLA2 is involved in cleaving 22:6n-3 from
brain phospholipids (Fig. 1). Future studies are needed
to identify the specific roles of group VIA and VIB iPLA2

in 22:6n-3 release from brain phospholipids. Further ap-
proaches to answering these questions could include the
study of sn -2 radiolabeled 22:6n-3 glycerophospholipids in
group VI iPLA2-specific assay systems, the generation and
characterization of groups VIA and VIB iPLA2 brain-specific

knockouts, or the assessment of 22:6n-3 kinetics in other
models with altered brain group VI iPLA2 activity. To date,
it is known that group VIA iPLA2 decreases in the hippo-
campus in response to aging (68) and in the cortex in
response to dietary n-3 PUFA deprivation (47). Whether
or not decreased group VI iPLA2 and its potential ability
to regulate 22:6n-3 release from brain phospholipids are
contributing factors in the susceptibility of the aged or the
n-3 PUFA-deprived brain to disease remains to be tested.

R.P.B. received funding from the Natural Sciences and Engi-
neering Research Council of Canada.
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